

Higher Mathematics Revision Checklist

Contents:

Expressions & Functions	Page
Logarithmic & Exponential Functions	1
Addition Formulae	3
Wave Function	4
Graphs of Functions	5
Sets & Functions	6
Vectors	8

Relationships & Calculus

Polynomials	11
Quadratic Functions	12
Trigonometry	13
Further Calculus	15

Applications

The Straight Line	16
The Circle	17
Recurrence Relations	17
Differentiation	18
Integration	19

Expressions & Functions

Торіс	Skills	Notes	
Logs and Exponent	tials		
Prior Skills			
Equation of a Line	Know and use $y = mx + c$ to determine the equation of a line		
New Skills			
Exponential Functions	An exponential function is written in the form $y = a^x$ where <i>a</i> is the base, and <i>x</i> is the index or exponent $y = a^x$ (1, <i>a</i>)		
The Logarithmic Function	The logarithmic function is the inverse of the exponential function. It is written as $y = \log_a x$ where <i>a</i> is the base NB: On your calculator the <i>log</i> button is $\log_{10} x$ (<i>a</i> , 1) <i>y</i> = $\log_a x$		
Convert Between Logarithmic and Exponential Form	If $y = a^x$ then $x = \log_a y$ e.g. $3 = \log_a 8$ $a^3 = 8$ a = 2		
The Exponential Function	The exponential function is written as $y = e^x$ where <i>e</i> is the base, which is approximately 2.718		
Natural Logarithms	The natural log function is the inverse of the exponential function $y = e^x$, it is written as $y = \ln x$, which means $y = \log_e x$		
Laws of Logs	 log_a xy = log_a x + log_a y e.g. log₄ 8 + log₄ 2 = log₄ (8 × 2) = log₄ 16 = 2 (since 4² = 16) log_a x/y = log_a x - log_a y e.g. log₄ 8 - log₄ 2 = log₄ 8/2 = log₄ 4 = 1 (since 4¹ = 4) log_a xⁿ = n log_a x e.g. 1/3 log₉ 27 = log₉ 27^{1/3} = log₉ 3 = 1/2 (since 9^{1/2} = 3) log_a a = 1 e.g. log₅ 5 = 1 (since 5¹ = 5) 		
Use the Laws of Logs to Solve Log Equations	Ex 1. Solve: $\log_5(x+1) + \log_5(x-3) = 1$ Soln. $\log_5(x+1)(x-3) = 1$ (using first law) $(x+1)(x-3) = 5$ (since $5^1 = 5$) $x^2 - 2x - 3 = 5$ (solve for x) $x^2 - 2x - 8 = 0$ $(x+2)(x-4) = 0 \therefore x = -2, x = 4$		

Торіс	Skills	Notes		
	Ex 2. Find <i>x</i> if $4 \log_x 6 - 2 \log_x 4 = 1$			
	Soln. $\log_x 6^4 - \log_x 4^2 = 1$			
	$\log_x \frac{6^4}{4^2} = 1$			
	$\frac{6^4}{4^2} = x$			
	$x = \frac{2^4 \times 3^4}{10^4}$ (since $6^4 = 2^4 \times 3^4$ and $4^2 = 16 = 2^4$)			
	$r = 3^4$			
	x = 3 x = 81			
Use Laws of Logs to Solve Exponential Growth or Decay	 For finding an initial value; substitue given values in to equation to determine the initial value For finding a half-life, make the equation equal to one half 			
Problems				
	e.g. In the equation, where A represents micrograms of a radioactive substance remaining over time t. Find:			
	(a) the initial value if there are 500 microgram after 100 years			
	(b) the half-life of the substance $(-)$			
	(a) $A_t = A_0 e^{-0.004 \times 100}$			
	$500 = A_0 e$ $500 = 0.67 A_0$			
	$A_0 = 746$ micrgrams			
	(b) $373 = 746e^{-0.004t}$			
	$\frac{1}{2} = e^{-0.004t}$			
	$\ln \frac{1}{2} = \ln e^{-0.004t}$			
	$-0.004t = \ln \frac{1}{2}$			
	t = 173 years			
Formulae for Experimental Data	In experimental data questions, two types of exponential functions are considered $y = kx^n$ and $y = ab^x$			
Experimental Data	$\mathbf{v} = \mathbf{k}\mathbf{x}^n$			
	Taking logs of boths sides, this equation may be expressed as $\log y = n \log x + \log k$. To find the unknown values <i>n</i> and <i>k</i> :			
	• If the data given is x and y data, then take logs of two sets of the			
	data for x and y and form a new table with $\log x$ and $\log y$ Substitute new values into $\log y = n \log x + \log k$ and solve			
	simultaneously to find values for <i>n</i> and log <i>k</i>			
	• Find k by solving log k			
	• Write $y = kx^n$ with values of k and n			
	$\mathbf{v} = \mathbf{a}\mathbf{b}^{\mathbf{x}}$			
	Taking logs of boths sides, this equation may be expressed as			
	$\log y = x \log b + \log a$. To find the unknown values a and b:			
	 If the data given is x and y data, then take logs of the data for y Substitute values into log y = x log h + log a and solve 			
	simultaneously to find values for $\log a$ and $\log b$			
	• Find <i>a</i> and <i>b</i> by solving log <i>a</i> and log <i>b</i>			
	• Write $y = ab^{*}$ with values of a and b			
Sketch the Graph of	See Granhs of Functions			
the Inverse Function				
of a Log or				

Торіс	Skills	Notes		
Addition Formulae	2			
Prior skills				
Pythogoras Theorem	$a^2 = b^2 + c^2$ a b c			
SOHCAHTOA	$\sin \theta = \frac{\partial pp}{Hyp}$, $\cos \theta = \frac{Adj}{Hyp}$, $\tan \theta = \frac{\partial pp}{Adj}$ Hypotenuse θ Adjacent Opposite			
Solve Trig Equations	Use the CAST diagram or graphical method to solve equations (see <i>Relationships</i> in National 5 checklist)			
Exact Values	See Trigonometry			
Convert from Degrees to Radians and Vice-Versa	See Trigonometry			
New Skills				
Use Exact Values to Calculate Related Obtuse Angles	Ex 1. Find the exact value of cos 225° Soln. The related acute angle is 45° since $180^\circ + 45^\circ = 225^\circ$ From the graph or CAST diagram cos 225° is negative. $\therefore \cos 225 = -\cos 45 = -\frac{1}{\sqrt{2}}$ Ex 2. Find the exact value of $\sin \frac{2\pi}{3}$ Soln. The related acute angle is $\frac{\pi}{3}$ since $\pi - \frac{\pi}{3} = \frac{2\pi}{3}$ From the graph or CAST diagram $\sin \frac{2\pi}{3}$ is positive. $\therefore \sin \frac{2\pi}{3} = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$			
Use Addition Formulae to Expand Expressions	$sin(\alpha + \beta) = sin \alpha \cos \beta + cos \alpha sin \beta$ $sin(\alpha - \beta) = sin \alpha \cos \beta - cos \alpha sin \beta$ $cos(\alpha + \beta) = cos \alpha \cos \beta - sin \alpha sin \beta$ $cos(\alpha - \beta) = cos \alpha \cos \beta + sin \alpha sin \beta$ NB: For sin functions the signs are the same, for cos functions the signs are different			
Use Addition Formulae to Evaluate Exact Values of Expressions	Ex 1. Find the exact value of cos 75° Soln. cos 75° = cos(45 + 30)° (use addition formulae expansion) = cos 45 cos 30 - sin 45 sin 30 (use exact values) = $\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}$ = $\frac{\sqrt{3} - 1}{2\sqrt{2}}$ Ex 2. Given sin $A = \frac{3}{5}$ and cos $B = \frac{12}{13}$, show that sin($A + B$) = $\frac{56}{65}$ Soln. Use SOHCAHTOA to sketch triangles from the info given and use Pythagoras to find unknowns $A = \frac{5}{4}$ $B = \frac{13}{12}$ 5 Expand using Addition Formulae sin($A + B$) = sin $A \cos B + \cos A \sin B$ = $\frac{3}{5} \times \frac{12}{13} + \frac{4}{5} \times \frac{5}{13}$ = $\frac{56}{65}$			

Торіс	Skills	Notes	
Solve Trig Equations using Trig Identities	 Determine which part of the equation has a related identity Replace trigonometric term with related identity and solve 		
	e.g. Solve $\sin 2x + \sin x = 0$, for $0 \le x \le 180^{\circ}$		
	Soln. As $\sin 2x = 2\sin x \cos x$, then		
	$2 \sin x \cos x + \sin x = 0$, solve by factorising		
	Factorise $\sin x (2\cos x + 1) = 0$		
	$2\cos x = \frac{1}{2} (\text{using CAST})$		
	$(\text{using graph}) \qquad \qquad \cos x = -\frac{1}{2} (\text{using CAST})$		
	$x = 0^{\circ}, 180^{\circ}, \frac{360^{\circ}}{360^{\circ}}$ $x_A = 60^{\circ}$ $x = 120^{\circ}, \frac{240^{\circ}}{240^{\circ}}$		
	$x = 0^{\circ}, 120^{\circ}, 180^{\circ}$		
Wave Function			
Prior Skills			
Solve Trig Equations	Use the CAST diagram or graphical method to solve equations (see <i>Relationships</i> in National 5 checklist)		
Exact Values	See Trigonometry		
Use Addition Formulae to Expand	See Addition Formulae		
New Skills			
Write an Expression	$a \cos x + b \sin x$ can be written in one of the following forms:		
Form $k \sin(x \pm \alpha)$	$k\sin(x+\alpha)$		
or $k \cos(x \pm \alpha)$	$k\sin(x-\alpha)$		
	$k \cos(x + \alpha)$ $k \cos(x - \alpha)$		
	Where $k = \sqrt{a^2 + b^2}$ and $\tan \alpha$ is derived from a and b		
	Ex 1. Express $\sqrt{3} \sin x + \cos x$ in the form $k \sin(x + \alpha)^\circ$ where		
	Soln. $k \sin(x + \alpha) = k(\sin x \cos \alpha + \cos x \sin \alpha)$ (Expand)		
	$= k \cos \alpha \sin x + k \sin \alpha \cos x$		
	$=\sqrt{3} \sin x + \cos x$		
	$\therefore k \cos \alpha = \sqrt{3} \text{ and } k \sin \alpha = 1$		
	To find k: $k = \sqrt{3} + 1 = 2$		
	To find α : $\tan \alpha = \frac{1}{k \cos \alpha}$		
	$\tan \alpha = \frac{1}{\sqrt{3}}$ (use exact values) $\alpha = 30^{\circ}$		
	(NB: $k \sin \alpha$ and $k \cos \alpha$ are both positive, therefore the angle is in quadrant 1, i.e. less than 90°)		
	$\therefore \sqrt{3} \sin x + \cos x = 2 \sin(x+30)^{\circ}$		

Торіс	Skills	Notes	
	Ex 2. Express 8 $\cos x - 6 \sin x$ in the form $k \cos(x + \alpha)^{\circ}$ where		
	$k > 0$ and $0 \le x \le 360^{\circ}$		
	Soln. $k \cos(x + \alpha) = k(\cos x \cos \alpha - \sin x \sin \alpha)$ (Expand)		
	$= k \cos \alpha \cos x - k \sin \alpha \sin x$		
	$= 8 \cos x - 6 \sin x$		
	$\therefore k \cos \alpha = 8 \text{ and } k \sin \alpha = 6$		
	To find k: $k = \sqrt{8^2 + 6^2} = 10$		
	To find α : $\tan \alpha = \frac{k \sin \alpha}{k \cos \alpha}$		
	$\tan \alpha = \frac{6}{8}$ (use calculator)		
	$\alpha = 36.9^{\circ}$		
	$\therefore 8 \cos x - 6 \sin x = 10 \cos(x + 36.9)^{\circ}$		
Graphs of Functions			
Prior Skills		1	
Sketch Quadratics	Sketch quadratics of the form $y = kx^2$ and $y = a (x + b)^2 + c$		
Sketch Trig Graphs	Sketch graphs of the form $y = a \sin bx + c$ and $y = a \cos bx + c$		
New Skills			
Sketch Related	Ensure all given coordinates are translated and marked on the new		
Graphs	graph and axes and graphs are labelled		
	y = f(x) + a Graph moves up or down by a Up for $f(x) + a$ Down for $f(x) - a$		
	y = f(x + a) Graph moves left or right Left when $f(x + a)$ Right for $f(x - a)$		
	y = -f(x) Graph reflects in x-axis		
	y = f(-x) Graph reflects in y-axis		
	y = kf(x) Graph is stretched vertically for $k > 1$ Graph is squashed vertically for $0 < k < 1$		

Торіс	Skills	Notes		
	y = f(kx) Graph is squashed horizontally for $k > 1$ Graph is stretched horizontally for $0 < k < 1$			
Sketch Log and Exponential Graphs	Log graphs of the form $y = \log_a x$ always cut the x-axis at the point (1, 0) and will pass through (a, 1) Exponential graphs of the form $y = a^x$ always cut the y-axis at the point (0, 1) and will pass through (1, a) All of the related graph transformations above apply to log and exponential graphs			
Sketch the Graph of the Inverse Function of a Log or Exponential Function	The graph of an inverse function is reflected along the line $y = x$. The logarithmic graph is the inverse of the exponential graph and vice-versa e.g. For the graph of the function $y = 2^x$ the inverse function is $y = \log_2 x$ $y = \log_2 x$ $y = \log_2 x$ $y = \log_2 x$			
Sketch a Trig Graph of the Form $y =$ $k \sin(x \pm \alpha)$ or $y =$ $k \cos(x \pm \alpha)$	See Trigonometry – Sketch a Trig Graph from its Equation			
Sets and Functions				
Prior Skills				
Identify the Turning Point of a Quadratic	From completed square form $y = a (x + b)^2 + c$, turning point is (- <i>b</i> , <i>c</i>)			
New Skills		1		
Find Composite Functions	Composite functions consist of one function within another. e.g. If $f(x) = 3x - 2$ and $g(x) = x^2 - 4$, find (a) $f(g(x))$ (b) $g(f(x))$ Soln. (a) $f(g(x)) = 3(x^2 - 4) - 2 = 3x^2 - 12 - 2 = 3x^2 - 14$ (b) $g(f(x)) = (3x - 2)^2 - 4 = 9x^2 - 12x + 4 - 4 = 9x^2 - 12x$			

Торіс	Skills	Notes		
Evaluate Using Composite Functions	e.g. Find $H(-1)$ where $H(x) = g(f(x))$ and $f(x) = 3x - 2$, $g(x) = x^2 - 4$ Soln. <i>Method 1:</i> $H(x) = g(f(x)) = = 9x^2 - 12x$ (from example above) $H(-1) = 9(-1)^2 - 12(-1) = 21$			
	Method 2: f(-1) = 3(-1) - 2 = -5 $g(-5) = (-5)^2 - 4 = 21$			
Determine a Suitable Domain of a Function	Restrictions on the domain of a function occur in two instances at Higher Mathematics. A restriction will occur when a denominator is zero, which is undefined or when a square root is negative, which is non-real e.g. For $f(x) = \frac{12x}{(4-x)^2}$ and $x \in \mathbf{R}$, write a restriction on the domain of $f(x)$			
	Soln. $x \neq 4$ as this would make the denominator zero			
State the Range of a Function	e.g. State the minimum turning point of the function $f(x) = x^2 + 5$ and hence state the range of the function (see <i>prior skills</i>) Soln. Minimum turning point is (0, 5) as the y-coordinate of the turning point is 5, the range of the function is $f(x) > 5$			
Find an Inverse Function	For a function $f(x)$ there is an inverse function $f^{-1}(x)$, such that $f(f^{-1}(x)) = x$ To find an inverse function: • Replace x with y in the function and $f(x)$ with x • Change the subject to y e.g. For the function $f(x) = \frac{3}{4-x^2}$ find the inverse function $f^{-1}(x)$ Soln. $f(x) = \frac{3}{4-x^2}$ $x = \frac{3}{4-y^2}$ $4 - y^2 = \frac{3}{x}$ $4 - \frac{3}{x} = y^2$ $y = \sqrt{4 - \frac{3}{x}}$ $\therefore f^{-1}(x) = \sqrt{4 - \frac{3}{x}}$			
Common Terms				
Domain	The <i>domain</i> of a function is the set of numbers that can be input into the function (<i>see Determine a Suitable Domain</i> above)			
Range	The <i>range</i> of a function is what comes out of the function after the x-values have been put in (see <i>State the Range of a Function</i>)			
Number Sets	 There are five standard number sets to consider at Higher Mathematics The set of <i>natural numbers</i> N (counting numbers) N = {1,2,3,4,} The set of <i>whole numbers</i> W (the same as <i>natural numbers</i>, but inclusive of zero) W = {0, 1, 2, 3, 4,} The set of <i>integers</i> Z (the same as <i>whole numbers</i>, but inclusive of negative numbers) Z = {, -2, -1, 0, 1, 2, 3, 4,} 			

Торіс	Skills	Notes			
	• The set of <i>rational numbers</i> Q (all numbers that can be written				
	 The set of <i>real numbers</i> R (inclusive of both rational and 				
	irrational numbers i.e. $\pi, \sqrt{3}$, etc.)				
Vectors					
Prior Skills		1	1	· · · · ·	
Vector Notation	Vectors can be named in one of two ways. Either by using the letters of the points at the end of the line segment \overrightarrow{AB} or by using a single letter in lower case u. When writing the lower case name, underline the letter A u B				
2D Line Segments	Add or subtract 2D line Segments • Vectors end-to-end • Arrows in same direction				
Finding a Vector from Two Coordinates	Know that to find a vector between two points A and B then $\overrightarrow{AB} = b - a$ NB: Vector notation for a vector between two points A and B is \overrightarrow{AB}				
3D Vectors	Determine coordinates of a point from a diagram representing a 3D object Look at difference in x, y and z axes individually e.g. The cuboid is parallel to the x, y and z axes. Find the coordinates of C $A = \begin{pmatrix} x \\ 4, 5, 0 \\ x \end{pmatrix}$ C (15, 9, 0)				
Position Vectors	The position vector of a coordinate is the vector from the origin to the coordinate. E.g. A (4, -3) has the position vector $\boldsymbol{a} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$				
The Zero Vector	$inom{0}{0}$ is called the zero vector, written $f 0$ m u+(-m u)=f 0				
Add and Subtracy Vector Components	Add and Subtract 2D and 3D vector components. $\boldsymbol{a} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}$ $\boldsymbol{a} + \boldsymbol{b} = \begin{pmatrix} 1+3 \\ 1+2 \\ 4+5 \end{pmatrix}$				
Multiply Vector Components	Multiply vector components by a scalar $2a = 2\begin{pmatrix} 1\\1\\4 \end{pmatrix} = \begin{pmatrix} 2\\2\\8 \end{pmatrix}$				

Торіс	Skills	Notes	
Find the Magnitude	Find the magnitude of a 2D or 3D vector:		
of a vector	For vector $\boldsymbol{u} = \begin{pmatrix} y \\ y \end{pmatrix}$, $ \boldsymbol{u} = \sqrt{x^2 + y^2}$		
	For vector $v = \begin{pmatrix} x \\ y \end{pmatrix}$, $ v = \sqrt{x^2 + y^2 + z^2}$		
	\Z/		
New Skills			
Writing Vectors	Vectors can be written in component form i.e. $a = \begin{pmatrix} x \\ y \end{pmatrix}$ or in terms		
	of i , j and k , where each of these represents the unit vector in the		
	x, y and z direction.		
	e.g. $\overrightarrow{AB} = 4i - 3j + 6k$ can be written as $\overrightarrow{AB} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$		
	(6)		
Parallel Vectors	Vectors are parallel if one vector is a scalar multiple of the other		
	(1) (4) (1)		
	e.g. $a = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ and $b = \begin{pmatrix} 4 \\ 16 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 4 \end{pmatrix}$		
	$b = 4a$ \therefore vectors are parallel		
The Unit Vector	For any vector, there is a parallel vector u of magnitude 1. This is called the unit vector		
	e.g. Find the unit vector \boldsymbol{u} parallel to vector $\boldsymbol{a} = \begin{pmatrix} 5 \\ 12 \end{pmatrix}$		
	$ a = \sqrt{5^2 + 12^2} = 13$		
	1 - (5/)		
	$\therefore u = \frac{1}{13} {5 \choose 12} = {7 \choose 13} \choose 12 / 12}$		
	(/13/		
Collinearity	Points are said to be collinear if they line on the same line. To show		
	demonstrating one vector is a scalar multiple of the other and (b)		
	that they share a common point		
	e.g. Show that A(-3, 4, 7), B(-1, 8, 3) and C(0, 10, 1) are collinear		
	Soln. $\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} -1 \\ 8 \end{pmatrix} - \begin{pmatrix} -3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 2 \end{pmatrix}$		
	$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -4 \\ -2 \end{pmatrix}$		
	$\overrightarrow{BC} = \boldsymbol{c} - \boldsymbol{b} = \begin{pmatrix} 10 \\ 1 \end{pmatrix} - \begin{pmatrix} 8 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$		
	$\overrightarrow{AB} = 2\overrightarrow{BC}$ and point B is common \therefore A, B and C are collinear		
Divide Vectors into a	e.g. P is the point (6, 3, 9) and R is (12, 6, 0). Find the coordinates of		
an Unknown Point	Solo $\frac{\overrightarrow{PQ}}{\overrightarrow{PQ}} = \frac{2}{\overrightarrow{PQ}}$		
	$\overrightarrow{QR} = \frac{1}{2}$ $\overrightarrow{PO} = 2\overrightarrow{OR}$		
	q - p = 2(r - q)		
	q - p = 2r - 2q 3q = 2r + p		
	$3a - 2\begin{pmatrix} 12\\6 \end{pmatrix} + \begin{pmatrix} 6\\2 \end{pmatrix} - \begin{pmatrix} 30\\15 \end{pmatrix}$		
	$3\mathbf{y} = 2 \begin{pmatrix} 0 \\ 0 \end{pmatrix}^{+} \begin{pmatrix} 3 \\ 9 \end{pmatrix}^{-} \begin{pmatrix} 13 \\ 9 \end{pmatrix}$		
	$\boldsymbol{q} = \begin{pmatrix} 10\\5\\2 \end{pmatrix} \therefore \ Q \ (10, 5, 3)$		
	NB: this could also be calculated using section formula		

Торіс	Skills	Notes		
Find the Ratio in which a Point Divides a Line Segment	e.g. A(-2, -1, 4), B(1, 5, 7) and C(7, 17, 13) are collinear. What is the ratio in which B divides AC? Soln. $\overrightarrow{AB} = \mathbf{b} - \mathbf{a} = \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} - \begin{pmatrix} -2 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix}$ $\overrightarrow{BC} = \mathbf{c} - \mathbf{b} = \begin{pmatrix} 7 \\ 17 \\ 13 \end{pmatrix} - \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} = \begin{pmatrix} 6 \\ 12 \\ 6 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} = 2\overrightarrow{AB}$ $2\overrightarrow{AB} = \overrightarrow{BC}$ $\frac{\overrightarrow{AB}}{\overrightarrow{BC}} = \frac{1}{2}$ $\therefore \overrightarrow{AB}: \overrightarrow{BC}$ 1:2			
Scalar Product	When given an angle between two vectors, the scalar product is calculated using $a. b = a b \cos \theta$ NB: To find the angle between the two vectors θ , the vectors must be pointing away from each other and $0 \le \theta \le 180^{\circ}$ When given component form, i.e. if $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, the scalar product is calculated using $a. b = a_1b_1 + a_2b_2 + a_3b_3$			
Angle Between Two Vectors	The angle between two vectors is calculated by rearranging the scalar product formula $\cos \theta = \frac{a.b}{ a b }$ which can be expanded to $\cos \theta = \frac{a_1b_1+a_2b_2+a_3b_3}{ a b }$ NB: to find the angle between two vectors, the vectors must be pointing away from or towards each other. They must not be going in the same direction e.g. Not θ θ θ θ θ θ θ θ			
Perpendicular Vectors	Vectors are perpendicular when $\boldsymbol{a}.\boldsymbol{b}=0$			
Common Terms				
Vector	A vector is a quantity that contains both a size and a direction			

Relationships & Calculus

Торіс	Skills	Notes	
Polynomials			
Prior Skills			
Factorise	Common Factor, Difference of Two Square and Trinomial factorising		
Solving Quadratics	Algebraically or using quadratic formula		
Factors and Roots	 A root is a value for which a polynomial f(x) = 0. These are the <i>x</i>-coordinates at the point of intersection with the x-axis A factor is the form from which a root is derived e.g. for x(x - 4) = 0, x and (x - 4) are <i>factors</i>, x = 0 and x = 4 are <i>roots</i> 		
New Skills			
Fully Factorise a Polynomial	Use synthetic division e.g. Factorise $f(x) = x^3 - 3x + 2$ Soln. Set up synthetic division using coefficients from polynomial. - If there is no term, use 0 - The value outside the division is derived from factors of the last term (in this case factors of 2) - If the remainder of the division is 0 then the value outside the division is a root -2 1 0 -3 2 $\frac{-2}{1} - \frac{4}{2} - \frac{-2}{1} 0$ $\therefore (x + 2)$ is a factor and $x = -2$ is a root $(x + 2)(x^2 - 2x + 1) = 0$ (x + 2)(x - 1)(x - 1) = 0, $\therefore x = -1$ (twice) and $x = 2$		
Remainder Theorem	Find the Quotient and Remainder of a Function • Use synthetic division with the given value • The value at the end is the remainder e.g. Find the quotient and remainder when $f(x) = (x^3 - 3x + 9)$ is divided by $(x - 3)$ Soln. 3 1 0 -3 9 • $f(x) = (x^3 - 3x + 9) = (x - 3)(x^2 + 3x + 6) + 27$ Outsign to $(x^2 + 3x + 6) + 27$		
Identify the Equation of a Polynomial from a Graph	• Determine the factors from the roots on the graph • Set up a polynomial with a coefficient of k outside the brackets • Substitute the y-intercept or given point to determine value of k e.g. Soln. $y = k(x+2)(x-1)(x-5)$, When $x = 0, y = 5$ 5 = k(0+2)(0-1)(0-5) $5 = 10k$, $k = \frac{1}{2}$ $\therefore y = \frac{1}{2}(x+2)(x-1)(x-5)$		

Торіс	Skills	Notes		
Show that a Term is	• From the factor, determine the root (see Factors and Roots			
a Factor of a Polynomial	 Use synthetic division with the given value 			
	If the remainder is 0 the term is a factor			
Find Unknown	Substitute roots into equation and solve simultaneously			
Polynomial	e.g. Find the values of p and q if $(x + 2)$ and $(x - 1)$ are factors of $f(x) = x^3 + 4x^2 + px + q$			
	Soln. $(x + 2)$ is a factor $\therefore x = -2$ is a root			
	$(-2)^{3} + 4(-2)^{2} - 2p + q = 0$ 8 - 2p + q = 0			
	q = 2p - 8			
	$(x-1)$ is a factor $\therefore x = 1$ is a root			
	$(1)^{3} + 4(1)^{2} + p + q = 0$ 5 + p + q = 0			
	q = -p - 5			
	Solve two equations simultaneously			
	2p - 8 = -p - 5			
	$\therefore p = 1, q = -6$ and $f(x) = x^3 + 4x^2 + x - 6$			
Sketch the Graph of	• Find the <i>x</i> -intercepts (roots, when <i>y</i> = 0) using synthetic division			
a Polynomial Function	 Find the y-intercept (when x = 0) Find stationary points and their nature (see differentiation) 			
	 Find large negative and positive x 			
Common Terms				1
Polynomial	A function containing multiple terms of different powers e.g. $x^4 - 2x^3 + 3$			
Quadratic Functions				
Prior Skills (see Rela	ationships in National 5 Checklist)			
Solve a Quadratic	Graphically, Algebraically or using Quadratic Formula			
Sketch a Quadratic	In completed square formIn root form			
Identify the Equation of a Quadratic from its Graph	See Identify the equation of a Polynomial from a Graph (above)			
Complete the Square	$x^{2} + ax + b = (x + \frac{a}{2})^{2} + b - a^{2}$			
	Ex 1. $x^2 + 8x - 13 = (x + 4)^2 - 13 - 16 = (x + 4)^2 - 29$			
	Ex 2. $x^2 + 3x + 10 = (x + \frac{3}{2})^2 + 10 - \frac{9}{4} = (x + \frac{3}{2})^2 + \frac{40}{4} - \frac{9}{4} = (x + \frac{3}{2})^2 + \frac{31}{4}$			
Discriminant	$b^2 - 4ac$ where $y = ax^2 + bx + c$			
	The discriminant describes the nature of the roots $b^2 - 4ac > 0$, two real roots			
	$b^2 - 4ac = 0$ equal roots (i.e. tangent)			
	$b^2 - 4ac < 0$ no real roots			

Торіс	Skills	Notes		
New Skills				
Show a Line is a Tangent to a Quadratic Function	 Equate the line and quadratic Bring to one side Use the discriminant <i>or</i> factorise to show repeated root e.g. Show that the line y = x + 5 is a tangent to the curve y = x² + 5x + 9 Soln. x² + 5x + 9 = x + 5 x² + 4x + 4 = 0 (x + 2)(x + 2) = 0 x = -2 twice ∴ line is a tangent to quadratic. 			
Determine Nature of Intersection Between a Line and a Quadratic Function	 Equate line and quadratic Bring to one side Use the discriminant to determine nature of intersection 			
Determine Points of Intersection between a Line and a Quadratic Function	 Equate line and quadratic Bring to one side Solve for <i>x</i> Substitute <i>x</i> values into line to find <i>y</i> values 			
Use Discriminant to Find Unknown Coefficients of a Quadratic Function	• Identify coefficients <i>a</i> , <i>b</i> and <i>c</i> • Use discriminant Ex 1. Find <i>p</i> given that $x^2 + x + p = 0$ has real roots Soln. $a = 1, b = 1, c = p$ $b^2 - 4ac \ge 0$ $1^2 - 4(1)(p) \ge 0$ $1 - 4p \ge 0$ $1 \ge 4p$ $p \le \frac{1}{4}$ Ex 2. Find <i>p</i> given that $4x^2 + 2px + 1 = 0$ has no real roots Soln. $a = 4, b = 2p, c = 1$ $b^2 - 4ac < 0$ $(2p)^2 - 4(4)(1) < 0$ $4(p^2 - 4) < 0$ 4(p + 2)(p - 2) < 0 (Sketch a graph) For no real roots -2			
Common Terms		T	1 1	1
Parabola	The graph of a quadratic function			
Trigonometry				
Prior Skills	Know evertualized from table or using triangles and COUCAUTOA			r –
Exact Values	Know exact values from table of using triangles and SOHCAHTOA $\sqrt{2}$ 45° 1 $2/30°$ $\sqrt{3}$ 60° 1 Know exact values of 0°, 90°. 180°. 270° and 360° from trig graphs			
Solve Trig Equations	Use the CAST diagram or graphical method to solve equations (see <i>Relationships</i> in National 5 checklist)			

Торіс	Skills	Notes		
Determine Period, Shape and Max and Min Values from a Trig Equation	$y = a \cos bx$ Amplitude = a Period = $\frac{360}{b}$			
	NB: in the graph $y = a \tan bx$ the amplitude cannot be measured			
Adding Fractions	For solutions in radians, the ability to add fractions is required e.g. $\pi - \frac{\pi}{3} = \frac{3\pi}{3} - \frac{\pi}{3} = \frac{2\pi}{3}$, $2\pi + \frac{\pi}{3} = \frac{6\pi}{3} + \frac{\pi}{3} = \frac{7\pi}{3}$			
New Skills		1 1		
Convert from Degrees to Radians	• Multiply degrees by π and divide by 180 then simplify e.g. Change 35° to radians Soln. $\frac{35\pi}{180} = \frac{7\pi}{36}$			
Convert from Radians to Degrees	• Multiply radians by 180 and divide by π then simplify e.g. Change $\frac{5\pi}{6}$ to degrees Soln. $\frac{5\pi}{6} = \frac{5 \times 180\pi}{6\pi} = \frac{5 \times 30}{1} = 150^{\circ}$			
Solve Trig Equations with multiple solutions	• Identify how many solutions from the question • Solve the equation e.g. Solve $2 \cos 3x = 1$, for $0 \le x \le \pi$ Soln. $2 \cos 3x = 1$ $\cos 3x = \frac{1}{2}$ (As $\cos 3x$ has 6 solutions for $0 \le x \le 2\pi, \therefore 3$ solutions for $0 \le x \le \pi$) $3x = \frac{\pi}{3}, \pi - \frac{\pi}{3}, 2\pi + \frac{\pi}{3}$ $3x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{7\pi}{3}$ $x = \frac{\pi}{9}, \frac{2\pi}{9}, \frac{7\pi}{9}$			
Solve Trig Equations by Factorising	Factorise the equation in the same way as an algebraic equation, by looking for common factors, difference of two square or a trinomial e.g. Solve $2 \sin x \cos x + \sin x = 0$, for $0 \le x \le 180^{\circ}$ Soln. Factorise $\sin x (2\cos x + 1) = 0$ $\sin x = 0$ $x = 0^{\circ}, 180^{\circ}, 360^{\circ}$ $\cos x = -\frac{1}{2}$ (using CAST) $x_A = 60^{\circ}$ $x = 120^{\circ}, 240^{\circ}$ $\therefore x = 0^{\circ}, 120^{\circ}, 180^{\circ}$			
Identify the Equation of a Trig function from its Graph	e.g. Determine the equation of the graph 1. $\frac{5}{-3}$ 2. $\frac{2}{-2}$ $\frac{\pi}{6}$ $\frac{7\pi}{6}$ x Ans: $y = 4 \sin 3x + 1$ Ans: $y = 2 \cos(x - \frac{\pi}{6})$			
Sketch a Trig Graph from its Equation	e.g. Sketch the graph of $y = 2 \sin(x - 30)^\circ$ for $0 \le x \le 360$ showing clearly where the graph cuts the <i>x</i> -axis and the <i>y</i> -axis Ans. Amplitude of 2. Graph moves 30° to the right. Find x-intercepts when $y = 0$. Find y-intercept when $x = 0$			

Торіс	Skills	Notes		
Common Terms				
Radians	Radians are an alternative unit for measuring angles. π radians = 180° Common Conversions: $\frac{\pi}{2} = 90^{\circ}, \frac{\pi}{3} = 60^{\circ}, \frac{\pi}{4} = 45^{\circ}, \frac{\pi}{6} = 30^{\circ}, \frac{2\pi}{3} = 120^{\circ}, \frac{3\pi}{2} = 270^{\circ}$			
Further Calculus				
Prior Skills				
Differentiate	See Differentiation (in Applications)			
Integrate	See Integration (in Applications)			
Trig Equations	See Trigonometry (above)			
Radians	See Trigonometry (above)			
New Skills				
Differentiate Trig Functions	$y = \sin x \qquad \qquad y = \cos x$ $\frac{dy}{dx} = \cos x \qquad \qquad \frac{dy}{dx} = -\sin x$			
Integrate Trig Functions	$\int \sin x dx \qquad \int \cos x dx$ $= -\cos x + C \qquad = \sin x + C$			
Chain Rule	Used for differentiating composite functions • Differentiate the outer function • Multiply by the derivative of the inner function e.g. If $h(x) = f(g(x))$ then $h'(x) = f'(g(x)) \times g'(x)$ Ex. 1. Find $\frac{dy}{dx}$ when $y = \sqrt{2x-5}$ Soln. Prepare function for differentiation $y = (2x-5)^{\frac{1}{2}}$ $\frac{dy}{dx} = \frac{1}{2}(2x-5)^{-\frac{1}{2}} \times 2$ $\frac{dy}{dx} = \frac{1}{\sqrt{2x-5}}$ Ex 2. Find $\frac{dy}{dx}$ when $y = 3\cos^2 x$ Soln. Prepare function for differentiation $y = 3(\cos x)^2$ $\frac{dy}{dx} = 6(\cos x)^1 \times \sin x$ $\frac{dy}{dx} = 6\cos x \sin x$			
Integration of Composite Functions	When integrating composite functions • Integrate the outer function • Divide by the <u>derivative</u> of the inner function e.g. $\int (ax + b)^n dx = \frac{(ax+b)^{n+1}}{n+1 \times a} + C$ Ex 1. $\int (2x^3 + 5)^4 dx$ Soln. $\int (2x^3 + 5)^4 dx = \frac{(2x^3+5)^5}{5 \times 6x^2} + C = \frac{(2x^3+5)^5}{30x^2} + C$ Ex 1. $\int \sin(4x - 3) dx$ Soln. $\int \sin(4x - 3) dx = \frac{-\cos(4x-3)}{4} + C$			

Applications

Торіс	Skills	Notes		
The Straight Line		·		
Prior Skills				
Distance Between Two Points	Distance formula or alternative: $Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$			
Gradient of a line	• $m = \frac{y_2 - y_1}{x_2 - x_1}$ • $m = \tan \theta$ • Perpendicular gradients: $m_1 \times m_2 = -1$			
Equation of a Line	For every equation of line a point and gradient is required			
From Two Points	 Calculate gradient and substitute point (a, b) into equation: y - b = m(x - a) Expand bracket and simplify 			
Midpoint	$Midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$			
Point of Intersection	Solve using simultaneous equations			
New Skills				
Equation of a Perpendicular Bisector	 Find the midpoint of the line joining the two points Find gradient using perpendicular gradients Substitute midpoint and inverted gradient into y - b = m(x - a) 			
Equation of a Median	 Find the midpoint of the line joining the two points Find gradient of the median Substitute into y - b = m(x - a) 			
Equation of an Altitude	 Find gradient of the altitude using perpendicular gradients Substitute into y - b = m(x - a) with point from vertex 			
Collinearity	 Show that three points are collinear (i.e. on the same line) Find gradients (the same if parallel) and point in common Statement: Points A, B and C are collinear as m_{AB} = m_{BC} and point B is common to both 			
Common Terms				
Collinear	Points on the same line			
Congruent	The same size			
Concurrent	Lines that intersect at the same point NB: In a triangle, altitudes are concurrent (intersect at <i>orthocentre</i>), medians are concurrent (intersect at <i>centroid</i>) and perpendicular bisectors are concurrent (intersect at <i>circumcentre</i>)			
Centroid	The point of intersection of the three medians of a triangle			
Circumcentre	The point of intersection of three perpendicular bisectors in a triangle			
Orthocentre	The point of intersection of three altitudes of a triangle			

Торіс	Skills	Notes		
The Circle				
Prior Skills				
Distance between two points	Distance formula or alternative: $Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$			
Gradient	• $m = \frac{y_2 - y_1}{x_2 - x_1}$ • Perpendicular gradients: $m_1 \times m_2 = -1$			
Midpoint	$Midpoint = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$			
Discriminant	• $b^2 - 4ac$ where $ax^2 + bx + c = 0$ $b^2 - 4ac > 0$ $b^2 - 4ac = 0$ $b^2 - 4ac < 0$			
New Skills				
Equation of Circle with Centre the Origin and Radius <i>r</i>	• $x^2 + y^2 = r^2$			
Equation of a Circle with Centre (<i>a</i> , <i>b</i>) and Radius <i>r</i>	 Determine the centre and radius NB: Finding the centre often involves finding a midpoint of a diameter, or using a coordinate diagram and symmetry Substitute into equation (x - a)² + (y - b)² = r² 			
Centre and Radius of a Circle from its Equation	• Use the equation $x^2 + y^2 + 2gx + 2fy + c = 0$ • Centre from $(-g, -f)$ • Radius: $r = \sqrt{g^2 + f^2 - c}$ NB: if $g^2 + f^2 - c < 0$ the equation is not a circle			
Equation of a Tangent to a Circle	 Determine the gradient of the radius from centre and the point of contact of the tangent Find gradient using perpendicular gradients Substitute perpendicular gradient and point into equation of a line y - b = m(x - a) 			
Points of Intersection of a Line and a Circle	 Rearrange the line to y = mx + c then substitute into the equation of a circle Solve the quadratic to find x Substitute x value into y = mx + c to find y 			
Use Discriminant to Determine whether a Line and Circle Intersect	 Rearrange the line to y = mx + c then substitute into the equation of a circle Simplify to quadratic form Use discriminant to determine intersection 			
Common Terms				
Concentric	Circles that have the same centre			
Recurrence Relation	ons			
Prior Skills		1		
Finding Percentage Multipliers	 Determine whether question is percentage increase or decrease Add or subtract from 100% Divide by 100 e.g. 4.3% increase 100% + 4.3% = 104.3% = 1.043 			

Торіс	Skills	Notes	
New Skills			
Form Linear Recurrence Relations	• Find values of <i>a</i> and <i>b</i> for relation $u_{n+1} = au_n + b$ where <i>a</i> is the percentage multiplier and <i>b</i> is the increase		
Use Linear Recurrence Relations to Find Values	 Start with u₀ (initial value) and substitute into relation NB: Set up calculator by inputting u₀ and pressing '=' then ANS × a + b and continue pressing '=' until answer is reached. Write down all answers 		
Find the Limit of a Linear Recurrence Relation	 Determine values of a and b Ensure -1 < a < 1 Use limit formula L = b/(1-a) Interpret what the limit means in a specific context 		
Differentiation			
Prior Skills			
Laws of indices	• Know and use each of the laws of indices to manipulate algebraic fractions; e.g. $\frac{x^3 + \sqrt{x}}{x^2} = \frac{x^3}{x^2} + \frac{x^{\frac{1}{2}}}{x^2} = x + x^{-\frac{3}{2}}$		
New Skills			
Differentiate a Function	 To differentiate f(x) = axⁿ, f'(x) = anxⁿ⁻¹ For f(x) = g(x) + h(x) f'(x) = g'(x) + h'(x) NB: For differentiation questions, algebraic fractions need to be broken down into individual fractions (see Laws of Indices above) 		
Find the Gradient or Rate of Change of a Function at a Given Point	 Know that f'(x) = m = rate of change Differentiate the function Substitute x-coordinate into derivative e.g. Find the gradient of f(x) = 2x³ when x = 1 Soln. f'(x) = 6x² f'(4) = 6(1)² = 6 		
Find the Equation of a Tangent to a Curve	 Differentiate function Find gradient from derivative (<i>see above</i>) Substitute point and gradient into equation of a line y - b = m(x - a) 		
Find Stationary Points and Determine their Nature	Find Stationary Points• Differentiate function• Know that stationary points occur when $f'(x) = 0$ • Solve $f'(x) = 0$ to find x-coordinates of stationary points• Substitute x-coordinates into $f(x)$ to find y-coordinatesDetermine Nature• Draw nature table with x values slightly above and below the stationary points (make sure they are not lower or higher than any other stationary points)• Sketch the nature from positive or negative values• Answer question, e.g. Max turning point at (x, y) $\frac{x}{f'(x)} - 0 + slope$ $\frac{f'(x)}{slope} - \frac{1}{2}$		

Торіс	Skills	Notes		
Sketch a curve	 Find stationary points and nature (see above) Find roots by solving function (when y = 0) Find y-intercept (when x=0) Find large positive and large negative x. e.g. as f(x) → -∞, x → -∞ and as f(x) → +∞, x → +∞ Sketch information on graph 			
Sketch the derived function	 Sketch function Extend stationary points to other coordinate axis Determine where the gradient <i>m</i> is +ve and -ve. (the gradient is +ve where the graph of dy/dx is above the x-axis and negative where it is below 			
Closed Intervals	 Find the maximum and minimum value in a closed interval Find the stationary points and determine their nature (<i>see above</i>) Find the <i>y</i>-coordinates at the extents of the interval Examine to see where the maximum and minimum values are 			
Increasing and Decreasing Functions	 Differentiate the function Determine where gradient is positive or negative from the derivate or a sketch of the derivative NB: A function is increasing where the gradient <i>m</i> is positive and decreaseing where the gradient is negative 			
Common Terms		1		
Leibniz Notation	y and $\frac{dy}{dx}$			
Function Notation	f(x) and $f'(x)$			
Rate of Change	The rate at which one variable changes in relation to another. To find rate of change, differentiate function			
Integration				
Prior Skills		T		
Laws of indices	See Differentiation			
New Skills			1	
Integrate a Function	To integrate: $\int ax^n dx = \frac{ax^{n+1}}{n+1} + C$ • NB: When the integral is indefinite (i.e. there are no limits), remember 'C' the constant of integration			
Evaluate a Definite Integral	• Integrate function • Evaluate between two limits e.g. Evaluate $\int_{1}^{3} 4x dx$ Soln. $\int_{1}^{3} 4x dx = [2x^2]_{1}^{3} = (2(3)^2) - (2(1)^2) = 16$			

Торіс	Skills	Notes		
Area Between Curve and x-axis	 Find the area above the x-axis Find the area below the x-axis (ignore the negative) Add them together \$\int_0^1 f(x) dx\$ and \$\int_1^2 f(x) dx\$ NB: The area below the x-axis will give a negative answer. Ignore the negative 			
Area Between Two Curves	 Set the curves equal to each other and solve to find the limits Set up integral with: ∫[upper curve - lower curve] dx ∫_a^b[f(x) - g(x)] dx Evaluate answer			
Differential Equations	Equations of the form $\frac{dy}{dx} = ax + b$ are called <i>differential</i> equations. They are solved by integration e.g. The curve $y = f(x)$ is such that $\frac{dy}{dx} = 9x^2$, the curve passes through (1, 5). Express y in terms of x Soln. $y = \int 9x^2 dx = 3x^3 + C$ at (1, 5), $5 = 3(1)^3 + C$ 5 = 3 + C $C = 2 \therefore y = 3x^3 + 2$			